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We show that weak measurements can be used to measure the tiny signature of topological phase transitions. The
signature is an in-plane photonic spin Hall effect, which can be described as a consequence of a Berry phase. It is
also parallel to the propagation direction of a light beam. The imaginary part of the weak value can be used to
analyze ultrasmall longitudinal phase shifts in different topological phases. These optical signatures are related
to the Chern number and bandgaps; we also use a preselection and postselection technique on the spin state
to enhance the original signature. The weak amplification technique offers a potential way to determine the spin
and valley properties of charge carriers, Chern numbers, and topological phases by direct optical measure-
ment. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.401531

1. INTRODUCTION

Topological physics has recently attracted great attention due to
its fundamental scientific importance and potential application
in novel optoelectronic devices [1–6]. Silicene, which consists
of silicon atoms [7,8], with a monolayer honeycomb system is a
prime candidate. Unlike graphene, silicene is nonplanar and
possesses intrinsic spin-orbit coupling that provides a mass
to Dirac electrons; it also favors an experimentally accessible
Kane–Mele type quantum spin Hall effect [9,10]. It is remark-
able that the mass can be controlled by an external electric field
and/or circularly polarized light [11,12], which leads to topo-
logical phase transitions in silicene. The Chern number, as a
topological invariant, is associated with a band, and it is the
integral of the Berry curvature over the entire Brillouin zone
[13]. Further, Berry curvature is a function of wave vectors.
Measurement of the Chern number plays an important role
in the determination of different topological phases. However,
one of the most challenging goals is how to measure the
Chern number and different topological states in a direct
and facile way.

Here, considering that Hall conductivity can be directly re-
flected by an optical signature, we investigate the signature am-
plified by weak measurement [14]. An in-plane photonic spin
Hall effect (SHE) and longitudinal phase shifts can be a new
spin-sensitive topological probe [15]. A fundamental origin of

the photonic SHE is related to the spin-orbit interaction. The
ubiquitous effect is often used as a metrological tool [16–20]
because of its high sensitivity to the physical properties of ma-
terials. This provides a novel measuring method for the met-
rology community [21–23].

This paper presents an optical signature for probing low-
energy Dirac-like physics in systems that can realize topologi-
cal phase transitions. It is valuable since an optical signature
will make this important physics more accessible to the met-
rology community. The in-plane photonic SHE serves as an
optical probe by virtue of the spatial splitting and angular de-
viations of its reflected beam. We can observe different Hall
transitions while silicene samples were exposed to externally
applied circularly polarized lasers and/or static electric fields.
While Ref. [24] considered transverse splitting, its system did
not exhibit weak measurement. This weak value amplification
technique can be applied to enhance the original tiny signa-
ture, achieving a sensitivity to ∼0.5 mm (∼1 milliradian).
Further, Brunner and Simon present a purely imaginary weak
value that can detect phase shifts, which has potential to out-
perform standard interferometry by three orders of magnitude
[25]. We apply this progressive method to probe topological
phase transitions on 2D atomic crystals. Thus, the optical sig-
nature that is amplified by weak measurement provides a fea-
sible scheme for observing the Chern number and topological
phase transitions.
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2. TOPOLOGICAL PHASE TRANSITIONS AND
OPTICAL SIGNATURE

We consider optical reflection from an air–silicene interface to
measure signals of topological phase transition. Due to the re-
fractive index gradient, the momentum can be transferred be-
tween the spin and extrinsic orbital angular momentum of
light along its propagation trajectory, resulting in beam splitting
with polarizations [26]. The beam splitting in the photonic
SHE, impinging on an anisotropic medium, occurs, respectively,
in the transverse and in-plane directions [27]. The transverse
splitting, implied by angular momentum conservation
[24,28,29], is ubiquitous, while the in-plane splitting only occurs
on an anisotropic medium [30]. The cross-polarization can cause
in-plane splitting [31]. Further, the Hall conductivity gives a
non-negligible contribution to the cross-polarization [32,33].
The in-plane photonic SHE is distinguished from the Goos–
Hänchen effect [34]. Because the former is spin-dependent,
and it takes place as a result of an effective spin-orbit interaction,
the latter is polarization-dependent, which is described in terms
of evanescent wave penetration. Remarkably, spin-sensitive topo-
logical phase transition requires a spin-sensitive measurement.
Here, we propose to take the in-plane splitting as an optical
probe of weak measurement to detect topological phase transi-
tions. Thus, a phase estimation technique is introduced to com-
plete the entire detection system.

Figure 1 illustrates that a Gaussian beam of frequency ω0

impinges at an angle θi on a silicene placed on top of a SiC
substrate of dielectric constant ϵ. The system is subject to a
static electric field and circularly polarized light. The corre-
sponding electromagnetic potential is given by A�t� �
�A0 sin ωt ,A0 cos ωt�, where ω ≫ ω0 is the frequency of cir-
cularly polarized light with ω < 0 �ω > 0� specifying left
(right) circular polarization and A0 is the amplitude.

The low-energy effective Hamiltonian is derived in the mo-
mentum space [35–37]. We have

H η � ℏνF �ηkxτx � kyτy� � λSOσzητz − elEzτz − Λητz : (1)

Here, σ � �σx , σy, σz� and τ � �τx , τy, τz� are the Pauli matri-
ces of the spin and the sublattice pseudospin, respectively;
η � �1 is the valley index, νF is the Fermi velocity, λSO is
the effective spin-orbit (SO) coupling, l is the buckled height,
Ez is the perpendicular electric field, and Λ is the coupling con-
stant between the monolayer and the circularly polarized light.
By diagonalizing the Hamiltonian in Eq. (1), the bandgap is
given by 2jmη

s j with the Dirac mass:

mη
s � ηsλSO − elEz − ηΛ: (2)

Here, Λ � �eaA0νF �2ℏ∕ω0, and a is the lattice constant. From
Eq. (2), the Dirac mass can be controlled by applying electric
field Ez and coherent laser beam.

In addition, the nontrivial topological feature can also be
characterized by the Chern number. In the momentum
space, the vector Berry connection is defined as Ai�~k� �
−ihψ�~k�j ∂

∂ki
jψ�~k�i, where ψ�~k� is the eigenvector of the

Hamiltonian. The Berry curvature is F �~k� � ∂Ay�~k�∕
�∂kx� − ∂Ax�~k�∕�∂ky�. Since the different states correspond
to different beam shifts, the Berry curvature can also be distin-
guished by photonic SHE [38,39]. It is calculated in Fig. 2(h).

The Chern number is the integral of the Berry curvature
F �~k� over the first Brillouin zone. It is also associated to a band

Fig. 1. Schematic representation of the wave reflection from an
air–silicene interface. The system is subject to a static electric field
Ez , which is opposite the z axis, and to circularly polarized lasers.
The lattice constant is a � 3.86 Å, staggering length value is
l � 0.23 Å, and the effective spin-orbit coupling is λSO � 3.9 meV.

Fig. 2. Electronic band structure of silicene for K and K 0 point in
the states of (a) QSHI, (b) SPM, (c) QAHI, (d) SVPM, (e) PS-QHI,
(f ) BI, and (g) SDC. The red arrow (blue arrow) is for up-spin (down-
spin) electrons. (h) Berry curvature F �~k� can distinguish the topologi-
cal insulator and trivial insulator.
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provided the gap is open. It is determined by the Dirac mass
and the valley index, that is, Cηs � ηsgn�mη

s �∕2. Then, the
Chern number is obtained by C � P

η���Cη� � Cη−�. The
Chern number C is shown in Fig. 2. In Figs. 2(a)–2(c), we show
that, if we increase Λ (the initial value Λ � 0) while keeping
Ez � 0, these gaps close at Λ � λSO, where silicene is a semi-
metal. The spin-polarized metal (SPM) appears at this point. It
has the identical spin configuration at K and K 0 points. Further
increasing Λ, the gap is reopened. And the Chern number
changes, indicating that a system is continuously deformed into
a new state from the previous state, namely, a topological phase
transition occurs. Similar transitions can appear by changing Ez
in Figs. 2(a), 2(d), and 2(f ). The system undergoes topological
phase transitions from a quantum spin Hall insulator (QSHI)
into a quantum anomalous Hall insulator (QAHI) or a band
insulator (BI). These gaps will also close when jEz j reaches a
critical value. The spin-valley-polarized metal (SVPM) emerges
at this point between the QSHI and BI. In Fig. 2(g), a single
Dirac cone (SDC) state emerges along the phase boundaries,
where the gap is open at the K point but closed at the K 0 point.
Further increasing Λ and Ez from QSHI, the silicene reaches
the photoinduced spin-polarized quantum Hall insulator
(PS-QHI) phase in Fig. 2(e).

The expressions for the longitudinal and transverse conduc-
tivities with zero temperature can be obtained by Kubo’s for-
mula [24,40–42]; we have

σ̃ηsxx
σ0∕2π

� 4μ2 − jmη
s j2

2ℏμΩ
Θ�2μ − jmη

s j� �
�
1 −

jmη
s j2

ℏ2Ω2

�

× arctan
�
ℏΩ
M

�
� jmη

s j2
ℏΩM

,
σ̃ηsxy

σ0∕2π

� 2ηmη
s

ℏΩ
arctan

�
ℏΩ
M

�
: (3)

Here, Ω � −iω� Γ, where Γ is the scattering rate. σ0 �
e2∕4ℏ, σ̃ηsxx � σ̃ηsyy, σ̃ηsxy � −σ̃ηsyx , and M � max�jmη

s j, 2jμj�.
The reflected amplitudes can be obtained by solving

Maxwell’s equations and imposing the appropriate boundary
conditions, Ei � Er � Et and Hi �Hr −Ht � J. We decom-
pose the incoming field into its h and v components.
Sequentially, the four Fresnel’s reflection coefficients, rij for in-
coming i-polarized and outgoing j-polarized waves, are ob-
tained [43,44]:

rhh �
α−β� � σhvσvh
α�β� � σhvσvh

, rvv �
α�β− − σhvσvh
α�β� � σhvσvh

,

rhv � −
2

Z i

σhv
α�β� � σhvσvh

, rvh �
2

Z i

σvh
α�β� � σhvσvh

: (4)

Here, Z t � 1∕ ffiffiffiffi
ϵt

p
, α� � σhhkiz∕ki � kizkt∕�Z tkiktz��

1∕Z i, α− � σhhkiz∕ki � kizkt∕�Z tkiktz� − 1∕Z i, β� �
−σvvki∕kiz − kiktz∕�Z tkizkt� − 1∕Z i, β− � σvvki∕kiz � kiktz∕
�Z tkizkt� − 1∕Z i, Z i � 1∕ ffiffiffiffi

ϵi
p

, and ki is the wavenumber.
For horizontal polarization state jH i and vertical polariza-

tion state jV i, the reflected polarization states can be written as
�jH �kr�ijV �kr�i�T � MR �jH �ki�ijV �ki�i�T . Here,MR can be
expressed as �

rhh rhv
rvh rvv

�
: (5)

In the above equation, the boundary condition is krx � −kix
and kry � kiy. By making use of Taylor series expansion based
on the arbitrary angular spectrum component, all Fresnel’s re-
flection coefficients rij can be expanded as a polynomial of kix .
Then, we have

jH �ki�i →
�
rhh −

krx
k0

∂rhh
∂θi

�
jH �kr�i

�
�
rvh −

krx
k0

∂rvh
∂θi

�
jV �kr�i, (6)

jV �ki�i →
�
rhv −

krx
k0

∂rhv
∂θi

�
jH �kr�i

�
�
rvv −

krx
k0

∂rvv
∂θi

�
jV �kr�i: (7)

The polarization states of jH i and jV i are decomposed into
two spin components jH i � �j�i � j−i�∕ ffiffiffi

2
p

and jV i �
i�j−i − j�i�∕ ffiffiffi

2
p

, where j�i and j−i represent the left- and
right-circularly polarized components, respectively. The wave
function in momentum space (k) is specified by the following
expression:

jΦi � w0ffiffiffiffiffi
2π

p exp

�
−
w2
0�k2ix � k2iy�

4

�
: (8)

From Eqs. (6), (7), and (8), for weak spin-orbit interaction, the
reflected wave functions jΦH

r i and jΦV
r i can be obtained:

jΦH
r i ≈

rhh − irvhffiffiffi
2

p exp�iskrxδHx � krxΔH
x �j�ijΦi

� rhh � irvhffiffiffi
2

p exp�iskrxδHx � krxΔH
x �j−ijΦi, (9)

jΦV
r i ≈

rhv − irvvffiffiffi
2

p exp�iskrxδVx � krxΔV
x �j�ijΦi

� rhv � irvvffiffiffi
2

p exp�iskrxδVx � krxΔV
x �j−ijΦi: (10)

Here, the term of photonic spin Hall shifts can be written as

δHx � rhh
ki�r2hh � r2vh�

∂rvh
∂θi

−
rvh

ki�r2hh � r2vh�
∂rhh
∂θi

, (11)

δVx � rhv
ki�r2vv � r2hv�

∂rvv
∂θi

−
rvv

ki�r2vv � r2hv�
∂rhv
∂θi

: (12)

The term exp�iskrxδH ,V
rx � is the origin of the spin-orbit inter-

action. In general, the phases φG � skrxδH ,V
rx can be regarded as

the spin-redirection Berry phases [45–47]. It should be noted
that the above approximations do not hold for strong spin-orbit
interaction δH ,V

rx ≈ w0.
The spatial and angular optical signatures of the wave packet

at the initial position �zr � 0� are given by

hΔxH ,V
� i � hΦH ,V

r� ji∂krx jΦH ,V
r� i

hΦH ,V
r� jΦH ,V

r� i , (13)
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hΘxH ,V
� i � 1

ki

hΦH ,V
r� jkrx jΦH ,V

r� i
hΦH ,V

r� jΦH ,V
r� i : (14)

Substituting Eqs. (9) and (10) into Eqs. (13) and (14), the in-
plane photonic spin Hall shifts can be written as

hΔxH ,V
s i � −s Re�δH ,V

x �, (15)

hΘxH ,V
s i � −

1

zR
s Im�δH ,V

x �: (16)

Here, zR � πw2
0∕λ is the Rayleigh range, and w0 is the beam

waist. The optical signature also manifests itself as an in-plane
photonic SHE whose magnitude of spatial shifts (angular de-
viations) reaches the order of incident wavelength (one tenth of
mrad). The effect of topological phase transition in photonic
SHE is clearly influenced for infrared frequencies (in the range
shown 0.44 < Re�ϵ� < 1.52 and Im[ϵ] < 0.09). Figure 3 shows
that the topological phase diagram can be clearly described
by optical signatures, whether it is spatial splitting [Figs. 3(a)
and 3(b)] or angular deviations [Figs. 3(c) and 3(d)] of the re-
flected beam. Due to the spin-dependent nature of photonic
SHE, a different Chern number can also be described.

3. SPATIAL AND ANGULAR SHIFT SIGNAL
ESTIMATION

Actually, this tiny original signature needs to be amplified.
Considering its practicality, using weak measurement to am-
plify the signature is essential [48–50]. After the preselected
state, weak interaction, and post-selected state, the wave func-
tion evolves to the final state:

jΦf i � hψ f j exp�iσzkrxδrx�jψ iijΦi
� hψ f j1� iσzkrxδrxjψ iijΦi

≈ hψ f jψ ii
�
1� ikrxδrx

hψ f jσz jψ ii
hψ f jψ ii

�
jΦi

� hψ f jψ ii�1� ikrxAwδrx�jΦi: (17)

Here, Aw is the weak value and can be written as

Aw � hψ f jσz jψ ii
hψ f jψ ii

, (18)

where ψ i is the initial state, called the preselection, and ψ f is
the final state, called the postselection:

Im�Awδ
H ,V
rx � � Re�Aw�Im�δH ,V

rx � � Im�Aw�Re�δH ,V
rx �, (19)

Re�Awδ
H ,V
rx � � Re�Aw�Re�δH ,V

rx � − Im�Aw�Im�δH ,V
rx �: (20)

Here, the amplified angular and spatial shifts are determined by
the imaginary and real parts of the weak values.

To obtain a clear picture, we represent the preselection and
postselection of the states on a Bloch sphere as shown in Fig. 4.
The preselected state can be written as

jψ ii � cos

�
Θ
2

�
j�i � e−iΦ sin

�
Θ
2

�
j−i, (21)

where 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π represent the quantum
state on the Bloch sphere [51]. Due to the polarized rotation
effect, we introduce a middle polarization state:

jψmi � cos

�
Θ
2
� α

�
j�i � e−i�Φ�2δ� sin

�
Θ
2
� α

�
j−i:

(22)

Here, α� arctan�jrhvj∕jrhhj� and δ� �arg�rhv� − arg�rhh��∕2
are the polarized rotation angles for jH i polarization. After the
postselection, the final polarization state can be written as

Fig. 3. Phase diagrams of (a) right- and (b) left-circular photonic
Hall spatial shifts are given in the �elEz ,Λ�∕λSO plane, and the
Chern number C is indicated. The (c) right- and (d) left-circular pho-
tonic Hall angular deviations are described in the topological phase
diagram. The lines outline the phase boundaries indexed by K η.
The solid line represents the s � ↑, and the dashed line represents
the s � ↓. The wavelength is 810 nm.

Fig. 4. Representation on the Bloch sphere of the preselection jψ ii
and postselection jψ f i states. A middle state jψmi is considered due to
the polarized rotation effect. The angle Δ1�Δ2� gives the origin to the
real (imaginary) parts of the weak value.
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jψ f i � sin

�
Θ
2
� α� Δ1

�
j�i

− e−i�Φ�2δ�2Δ2� cos
�
Θ
2
� α� Δ1

�
j−i, (23)

where Δ1 and Δ2 are the postselection angles. A condition for
weak measurements is that the two polarization states jψ ii
and jψ f i are required to be perpendicular to each other [52].
Therefore, a middle polarization state is introduced, and the weak
value Aw should be modified as

Aw � hψ f jσz jψmi
hψ f jψmi

: (24)

The probability of the postselection on hψ f j and the weak value
take the form

γ ≈ jhψ f jψmij2 � cos2 Δ2 sin2 Δ1

� sin2 Δ2 sin2�Θ� Δ1 � 2α�, (25)

Re�Aw� �
sin Δ1 sin�2α� Δ1 � Θ�

jhψ f jψmij2
, (26)

Im�Aw� �
sin 2Δ2 sin�2α� Θ� sin�2�α� Δ1� � Θ�

2jhψ f jψmij2
: (27)

After a free evolution, the wave packet evolves to its final position:

hΔxH ,V
w i � hΦf ji∂krx jΦf i

hΦf jΦf i
, (28)

hΘxH ,V
w i � 1

ki

hΦf jkrx jΦf i
hΦf jΦf i

: (29)

Note that the angleΔ1 (Δ2) is responsible for the real (imaginary)
part of the weak value. If only purely real weak value is consid-
ered, we could make Δ2 � 0. Then, γ � sin2 Δ1 and Aw �
sin�2α� Δ1 � Θ�∕ sin Δ1. From Eqs. (28) and (29), the am-
plified shifts for jH i and jV i polarization are given by

hΔxH ,V
w i � Re�Awδ

H ,V
rx � � Re�δH ,V

rx � sin�2α� Δ1 � Θ�
sin Δ1

,

(30)

hΘxH ,V
w i � 1

zR
Im�Awδ

H ,V
rx � � Im�δH ,V

rx � sin�2α� Δ1 � Θ�
zR sin Δ1

:

(31)

Moreover, if only a purely imaginary weak value is considered, we
could make Δ1 � 0. So, γ � sin2 Δ2 sin2�Θ� 2α� and
Aw � −i cot Δ2. Similarly, the amplified spatial and angular
shifts can be obtained.

Here, the weak value can bring the spatial shifts (angular
shifts) to the order of millimeters (milliradians). Based on
the angular spectrum theory, the optimum of weak measure-
ment can be obtained [53]. In Figs. 5(a) and 5(b), the optimum
points �Δ1,Δ2� of amplified spatial shifts are close to points

�−2, 10� and �2, − 10�. Further, the optimum of amplified an-
gular shifts is close to point (2, 10) and �−2, − 10�, respectively.
Near the optimum point, the detected spatial (angular) shifts
are about 50 (10) times larger than the initial values.

The spatial intensity profiles in different states are shown in
Fig. 6. Figures 6(a)–6(f ) show the gain effects of weak measure-
ment and the result of interfering destructively in weak mea-
surement. There is a trade-off in using the weak value to
amplify the tiny signal: the sacrifice lies in a loss of energy.
Note that the shifts refer to the distance from the centroid
of reflected field to the center of the reflection coordinate sys-
tem. Figure 6(a) shows the original intensity distribution I for
jH i polarization in the state of QSHI. Due to the spin-orbit
interaction, the unperturbed photons exhibit tiny spin-
dependent splits. Subsequently, the postselection technique
is used to act on the spin state of the photons, as shown in
Fig. 6(d). We normalize the unperturbed intensity so that
the loss of energy can be more intuitively reflected. From
Figs. 6(g)–6(i), since the topological states are protected, the
optical signal is stable at the low-energy region. When Λ is in-
creased, the gap is closed; the system also becomes an inter-
mediate state in Figs. 6(b) and 6(e), namely, the state of
SPM. Simultaneously, the steady state of the signature is also
broken, that is, the shifts change. Finally, Λ is further increased,
the bandgap is reopened, and the topological phase transition
occurs; then, the Chern number changes, as shown in Figs. 6(c)
and 6(f ). This means that the signature is protected by the
new topological state, that is, the state of QAHI. The shift

Fig. 5. The optical signature is amplified by the quantum weak
measurement technique. The (a) spatial and (b) angular photonic spin
Hall shifts as a function of the postselected angles. Furthermore, the
Δ1 and Δ2 correspond to the small changes in longitude and latitude
on the Bloch sphere, respectively.
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is restabilized. Comparing Figs. 6(h) with 6(i), the signature
differences in different topological states are further amplified
due to the weak measurement technique. This also makes it
possible to observe the topological phase transition via conven-
ient and direct optical experiment.

4. PHASE SIGNAL ESTIMATION

The weak measurement technique gives access to increase the
detector’s resolution. Unlike our previous scheme of using the
distribution of the light field as a probe, we use the distribution
of frequency to implement the phase signal estimation. The
time of arrival of the photon is considered as the probe.
This scheme can be used to measure the time delay in materials,
depending on the polarizations. The preselection and postselec-
tion result in an amplification of the delay. The weak value
serves as an amplification factor. The frequency-domain detec-
tion in weak measurement could, in principle, outperform pre-
vious standard interferometry by three orders of magnitude
[25]. Here, we use this progressive method to measure 2D
atomic crystals.

We have a Gaussian function f �ω� � �πσ2�−1∕4 ×
exp�−�ω − ω0�2∕2σ2� [54,55]. Since the Soleil–Babinet com-
pensator (SBC) is responsible for weak interaction, the prese-
lected and postselected states are different from the previous
one. The preselected state is considered an elliptical polariza-
tion jψ ii � �e−iϵjH i � e�iϵjV i�∕ ffiffiffi

2
p

; the postselected state

is written as jψ f i � �jH i − jV i�∕ ffiffiffi
2

p
. Thus, we have a purely

imaginary weak value Aw � i cot ϵ. The quantum system is
the photonic polarization. The fundamental physical process
is this way: photons emitted from a source with a certain spec-
tral width pass through a polarizer and a quarter-wave plate,
that is, the preselection state. The photons with an elliptically
polarization state are then reflected on a topological material,
which is silicene. Next, the photons pass SBC and another
polarizer with postselection probability. Therefore, we have

jΦf i � hψ f j exp�−iτωσ̂�Mr jψ ii ⊗ jΦi
� 0.5f �ω��e−iτω−iϵrhh − e�iτω−iϵrvh

� e−iτω�iϵrhv − e�iτω�iϵrvv�: (32)

The frequency distribution is written by F�ω� � jhΦf jΦf ij2.
The center of frequency distribution isR

ωF �ω�dωR
F�ω�dω � ω0 � Δω, T �

Z
F �ω�dω: (33)

In Fig. 7(a), the spectral width is assumed as 100 nm. Due to
the decoherence, the postselection probabilities will eventually
tend to 0.5. That is to say, excessive time delays are not allowed.
Fortunately, the time delay provided by SBC is significantly
smaller than the decoherence time. Since topological states
are protected, the decoherence rate of postselection probabil-
ities is the same in different states. However, due to the closed
gaps, the situation will be different when Λ∕λSO � �1.

Fig. 6. Comparisons between an unperturbed and postselected intensity I distribution in different states. The intensity distribution and shifts of
field centroid in the state of (a) QSHI, (b) SPM, and (c) QAHI. (d)–(f ) Signal amplified by weak measurement technique. The real (solid) and
imaginary (dashed) parts of the Hall conductivity are depicted in (g). (h) The original signal and (i) the amplified signal as a function of photon
energy. The parameters are Λ∕λSO � 0 (QSHI), 1 (SPM), and 2 (QAHI). elEz∕λSO � 0.
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The silicene is anisotropic topological materials; thus, due to
the existence of cross-polarization, polarized rotation is inevi-
table. It can also lead to a large selected angle in preselection. In
Fig. 7(b), the selected angle ϵ is close to 35.5 deg. Compared
with the case without silicene, of course, there is no polarization
rotation without silicene, we need to rotate the polarizer to
compensate for this material-induced polarization rotation.
So, as long as we can use SBC to compensate for the
material-induced phase difference between jH i and jV i states,
we can obtain the specific polarized rotation angle, which is
caused by the material. Note that the sensitivity of weak value
amplification is different in different states. When Λ∕λSO �
�1, the sensitivity is the same because the bandgaps are closed.

The frequency shift Δω is responsible for the spectral shift
Δλ. We have

Δλ � λ2

2πc
Δω: (34)

From Figs. 7(c) and 7(d), the sensitivity of spectral shifts is dif-
ferent in different states. However, the selected angle is different
from the previous one. Because the symmetry point does not
appear when ϵ � 0, we can get ϵ � ϵ0 � Δϵ. Further, Δϵ is
the small angle we mentioned above. The ϵ0 is attributed to
material-induced polarization rotation. By properly adjusting
Δϵ, we can obtain the optimal weak value. In addition, the
smaller spectral width or time delay will result in small phase
shifts. The smaller Δϵ will be more suitable.

5. CONCLUSION

In conclusion, we have discussed the optical signature in a
topological phase transition. The Chern number and topologi-
cal phase can be determined by the in-plane photonic spin Hall
effect. Furthermore, a signature-enhancement technique
known as quantum weak measurement has been theoretically
proposed to enhance the original signature. Then, a phase es-
timation technique for 2D atomic crystals has been proposed.

Given our previous work for measuring the photonic spin Hall
effect through weak measurement [56], an experimental dem-
onstration of this work is within current capabilities. Because of
the importance of measurement in topological materials, the
introduction of weak measurement into topological phase tran-
sitions will significantly enrich the field of topological phys-
ics [57–59].
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